Fractional operators with exponential kernels and a Lyapunov type inequality
نویسنده
چکیده
*Correspondence: [email protected] Department of Mathematics and Physical Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia Abstract In this article, we extend fractional calculus with nonsingular exponential kernels, initiated recently by Caputo and Fabrizio, to higher order. The extension is given to both left and right fractional derivatives and integrals. We prove existence and uniqueness theorems for the Caputo (CFC) and Riemann (CFR) type initial value problems by using Banach contraction theorem. Then we prove Lyapunov type inequality for the Riemann type fractional boundary value problems within the exponential kernels. Illustrative examples are analyzed and an application about Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
منابع مشابه
A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems ...
متن کاملNash-type inequalities and decay of semigroups of operators
In that paper, we prove an equivalence between Nash-type inequalities and an exponential decay (in the sense of the definition 2.2) for symmetric submarkovian semigroups. This exponential decay generalizes the notion of spectral gap where this number is replaced by a function. We discuss different formulations of the decay associated to the usual Nash inequality in terms of Lyapunov-type functi...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملLyapunov-type inequality for a fractional differential equation with fractional boundary conditions
where q : [a,b] → R is a continuous function, and the zeros a and b of every solution y(t) are consecutive. Since then, many generalizations of the Lyapunov inequality have appeared in the literature (see [–] and the references therein). Recently, the research of Lyapunov-type inequalities for fractional boundary value problem has begun. In [], Ferreira investigated a Lyapunov-type inequali...
متن کاملStochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کامل